Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38679283

RESUMO

OBJECTIVE: To perform non-invasive Electroarthrography (EAG) on live horses and establish relationships between EAG and direct measurements of cartilage streaming potentials in weight bearing areas of the equine metacarpophalangeal joint. DESIGN: EAG was performed bilaterally on the metacarpophalangeal joints of live horses (n = 3). Separate experiments used metacarpophalangeal joint explants (n = 11) to measure EAG obtained during simulated loading followed by direct measurements of cartilage streaming potentials on joint surfaces using the Arthro-BST probe. Joints were assigned to relatively normal (n = 5) and mildly degraded (n = 6) groups based on histological scoring of Safranin-O/Fast Green stained sections. RESULTS: EAG, involving application of electrodes to skin surrounding the joint and repeated weight shifting, was well-tolerated in live horses. One pair of distal forelimbs were available for analogous ex vivo EAG testing and measurements were strongly correlated to in vivo EAG measurements obtained on the same joints (r = 0.804, p = 0.016, n = 8). Both indirect (EAG) and direct (Arthro-BST) measurements of cartilage streaming potentials distinguished between normal and mildly degraded cartilage with statistically significant differences at 5 of 6 and 4 of 6 electrodes during simulated standing and walking, respectively. Strong and moderate correlations for weight bearing regions on the dorsal phalanx and central metacarpus were detected during both standing and walking. At the metacarpus/sesamoid interface a moderate correlation occurred during walking. CONCLUSION: Non-invasive EAG was used successfully in a clinical scenario and correlated to direct measurements of streaming potentials in weight bearing cartilage. These data support the potential of EAG to contribute to the diagnosis and treatment of degenerative joint diseases.

2.
SLAS Discov ; 28(6): 270-274, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36921802

RESUMO

With over 39,000 students, and research expenditures in excess of $200 million, George Mason University (GMU) is the largest R1 (Carnegie Classification of very high research activity) university in Virginia. Mason scientists have been involved in the discovery and development of novel diagnostics and therapeutics in areas as diverse as infectious diseases and cancer. Below are highlights of the efforts being led by Mason researchers in the drug discovery arena. To enable targeted cellular delivery, and non-biomedical applications, Veneziano and colleagues have developed a synthesis strategy that enables the design of self-assembling DNA nanoparticles (DNA origami) with prescribed shape and size in the 10 to 100 nm range. The nanoparticles can be loaded with molecules of interest such as drugs, proteins and peptides, and are a promising new addition to the drug delivery platforms currently in use. The investigators also recently used the DNA origami nanoparticles to fine tune the spatial presentation of immunogens to study the impact on B cell activation. These studies are an important step towards the rational design of vaccines for a variety of infectious agents. To elucidate the parameters for optimizing the delivery efficiency of lipid nanoparticles (LNPs), Buschmann, Paige and colleagues have devised methods for predicting and experimentally validating the pKa of LNPs based on the structure of the ionizable lipids used to formulate the LNPs. These studies may pave the way for the development of new LNP delivery vehicles that have reduced systemic distribution and improved endosomal release of their cargo post administration. To better understand protein-protein interactions and identify potential drug targets that disrupt such interactions, Luchini and colleagues have developed a methodology that identifies contact points between proteins using small molecule dyes. The dye molecules noncovalently bind to the accessible surfaces of a protein complex with very high affinity, but are excluded from contact regions. When the complex is denatured and digested with trypsin, the exposed regions covered by the dye do not get cleaved by the enzyme, whereas the contact points are digested. The resulting fragments can then be identified using mass spectrometry. The data generated can serve as the basis for designing small molecules and peptides that can disrupt the formation of protein complexes involved in disease processes. For example, using peptides based on the interleukin 1 receptor accessory protein (IL-1RAcP), Luchini, Liotta, Paige and colleagues disrupted the formation of IL-1/IL-R/IL-1RAcP complex and demonstrated that the inhibition of complex formation reduced the inflammatory response to IL-1B. Working on the discovery of novel antimicrobial agents, Bishop, van Hoek and colleagues have discovered a number of antimicrobial peptides from reptiles and other species. DRGN-1, is a synthetic peptide based on a histone H1-derived peptide that they had identified from Komodo Dragon plasma. DRGN-1 was shown to disrupt bacterial biofilms and promote wound healing in an animal model. The peptide, along with others, is being developed and tested in preclinical studies. Other research by van Hoek and colleagues focuses on in silico antimicrobial peptide discovery, screening of small molecules for antibacterial properties, as well as assessment of diffusible signal factors (DFS) as future therapeutics. The above examples provide insight into the cutting-edge studies undertaken by GMU scientists to develop novel methodologies and platform technologies important to drug discovery.


Assuntos
Sistemas de Liberação de Medicamentos , Proteína Acessória do Receptor de Interleucina-1 , Animais , Universidades , DNA , Descoberta de Drogas
3.
Commun Biol ; 4(1): 956, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34381159

RESUMO

Lipid Nanoparticles (LNPs) are used to deliver siRNA and COVID-19 mRNA vaccines. The main factor known to determine their delivery efficiency is the pKa of the LNP containing an ionizable lipid. Herein, we report a method that can predict the LNP pKa from the structure of the ionizable lipid. We used theoretical, NMR, fluorescent-dye binding, and electrophoretic mobility methods to comprehensively measure protonation of both the ionizable lipid and the formulated LNP. The pKa of the ionizable lipid was 2-3 units higher than the pKa of the LNP primarily due to proton solvation energy differences between the LNP and aqueous medium. We exploited these results to explain a wide range of delivery efficiencies in vitro and in vivo for intramuscular (IM) and intravascular (IV) administration of different ionizable lipids at escalating ionizable lipid-to-mRNA ratios in the LNP. In addition, we determined that more negatively charged LNPs exhibit higher off-target systemic expression of mRNA in the liver following IM administration. This undesirable systemic off-target expression of mRNA-LNP vaccines could be minimized through appropriate design of the ionizable lipid and LNP.


Assuntos
Expressão Gênica , Íons/química , Lipídeos/química , Nanopartículas/química , RNA Mensageiro/química , RNA Mensageiro/genética , Administração Intravenosa , Animais , Composição de Medicamentos , Humanos , Concentração de Íons de Hidrogênio , Injeções Intramusculares , Camundongos , Estrutura Molecular , Nanopartículas/ultraestrutura , RNA Mensageiro/administração & dosagem , RNA Mensageiro/farmacocinética , Análise Espectral , Distribuição Tecidual , Transfecção
4.
Vaccines (Basel) ; 9(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33478109

RESUMO

The recent success of mRNA vaccines in SARS-CoV-2 clinical trials is in part due to the development of lipid nanoparticle delivery systems that not only efficiently express the mRNA-encoded immunogen after intramuscular injection, but also play roles as adjuvants and in vaccine reactogenicity. We present an overview of mRNA delivery systems and then focus on the lipid nanoparticles used in the current SARS-CoV-2 vaccine clinical trials. The review concludes with an analysis of the determinants of the performance of lipid nanoparticles in mRNA vaccines.

5.
Cartilage ; 13(2_suppl): 375S-385S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32500724

RESUMO

OBJECTIVE: We aimed to demonstrate that electroarthrography (EAG) measures streaming potentials originating in the cartilage extracellular matrix during load bearing through electrodes adhered to skin surrounding an articular joint. DESIGN: Equine metacarpophalangeal joints were subjected to simulated physiological loads while (1) replacing synovial fluid with immersion buffers of different electrolyte concentrations and (2) directly degrading cartilage with trypsin. RESULTS: An inverse relationship between ionic strength and EAG coefficient was detected. Compared to native synovial fluid, EAG coefficients increased (P < 0.05) for 5 of 6 electrodes immersed in 0.1X phosphate-buffered saline (PBS) (0.014 M NaCl), decreased (P < 0.05) for 4 of 6 electrodes in 1X PBS (0.14 M NaCl), and decreased (P < 0.05) for all 6 electrodes in 10X PBS (1.4 M NaCl). This relationship corresponds to similar studies where streaming potentials were directly measured on cartilage. EAG coefficients, obtained after trypsin degradation, were reduced (P < 0.05) in 6 of 8, and 7 of 8 electrodes, during simulated standing and walking, respectively. Trypsin degradation was confirmed by direct cartilage assessments. Streaming potentials, measured by directly contacting cartilage, indicated lower cartilage stiffness (P < 10-5). Unconfined compression data revealed reduced Em, representing proteoglycan matrix stiffness (P = 0.005), no change in Ef, representing collagen network stiffness (P = 0.15), and no change in permeability (P = 0.24). Trypsin depleted proteoglycan as observed by both dimethylmethylene blue assay (P = 0.0005) and safranin-O stained histological sections. CONCLUSION: These data show that non-invasive EAG detects streaming potentials produced by cartilage during joint compression and has potential to become a diagnostic tool capable of detecting early cartilage degeneration.


Assuntos
Cartilagem Articular , Animais , Cartilagem Articular/fisiologia , Eletrodos , Cavalos , Concentração Osmolar , Proteoglicanas , Suporte de Carga/fisiologia
6.
Cartilage ; 12(2): 237-250, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-30569762

RESUMO

OBJECTIVE: Previous studies have shown that intrinsic behavior of subchondral bone marrow stem cells (BMSCs) is influenced by donors and locations. To understand the variability in cartilage repair outcomes following bone marrow stimulation, we tested the hypothesis that in vivo cartilage repair correlates with in vitro biological properties of BMSCs using a rabbit model. METHODS: Full-thickness cartilage defects were created in the trochlea and condyle in one knee of skeletally mature New Zealand White rabbits (n = 8) followed by microdrilling. Three-week repair tissues were analyzed by macroscopic International Cartilage Repair Society (ICRS) scores, O'Driscoll histological scores, and Safranin-O (Saf-O) and type-II collagen (Coll-II) % stain. BMSCs isolated from contralateral knees were assessed for cell yield, surface marker expression, CFU-f, %Saf-O, and %Coll-II in pellet culture followed by correlation analyses with the above cartilage repair responses. RESULTS: In vivo cartilage repair scores showed strong, positive correlation with cell number, clonogenic, chondrogenic, and matrix production (Coll-II, GAG) potential of in vitro TGF-ßIII stimulated BMSC cultures. Trochlear repair showed clear evidence of donor dependency and strong correlation was observed for interdonor variation in repair and the above in vitro properties of trochlear BMSCs. Correlation analyses indicated that donor- and location-dependent variability observed in cartilage repair can be attributed to variation in the properties of BMSCs in underlying subchondral bone. CONCLUSION: Variation in cell number, clonogenic, chondrogenic, and matrix production potential of BMSCs correlated with repair response observed in vivo and appear to be responsible for interanimal variability as well as location-dependent repair.


Assuntos
Medula Óssea , Matriz Óssea/citologia , Cartilagem Articular/citologia , Condrogênese/fisiologia , Células-Tronco Mesenquimais/fisiologia , Animais , Artroplastia Subcondral , Matriz Óssea/cirurgia , Osso e Ossos , Cartilagem Articular/cirurgia , Contagem de Células , Células Cultivadas , Colágeno Tipo II/metabolismo , Modelos Animais de Doenças , Proteínas da Matriz Extracelular/metabolismo , Membro Posterior , Transplante de Células-Tronco Mesenquimais , Coelhos
7.
J Pharm Sci ; 109(4): 1581-1593, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31891675

RESUMO

Messenger RNA (mRNA)-containing nanoparticles were produced by electrostatic complexation with a library of pharmaceutical grade chitosans with different degrees of deacetylation and hyaluronic acids (HAs) (native vs. sulfated). Polymer length (Mn), HA degree of sulfation (DS), and amine to phosphate to carboxyl + sulfate (from HA) ratio (N:P:C) were controlled. In vitro transfections were performed in the presence/absence of trehalose and at different pH. Particle size and ζ-potential were correlated with transfection efficiency. Polymer length and charge densities (degree of deacetylation, degree of sulfation) of both HA and chitosan had a direct influence on transfection efficiency through modulation of avidity to mRNA. N:P:C ratio, trehalose, mixing concentration, and nucleic acid dose influenced transfection efficiency with optimized formulations reaching ∼60%-65% transfection efficiency relative to commercially available lipid control with no apparent toxicity for transfection at slightly acidic pH 6.5.


Assuntos
Quitosana , Nanopartículas , Ácido Hialurônico , Peso Molecular , Tamanho da Partícula , RNA Mensageiro/genética , Transfecção
8.
Biomed Mater Eng ; 30(4): 349-364, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31476140

RESUMO

BACKGROUND: Platelet-rich plasma (PRP) has been used to solubilize freeze-dried chitosan (CS) formulations to form injectable implants for tissue repair. OBJECTIVE: To determine whether the in vitro performance of the formulations depends on the type of PRP preparation used to solubilize CS. METHODS: Formulations containing 1% (w/v) CS with varying degrees of deacetylation (DDA 80.5-84.8%) and number average molar mass (Mn 32-55 kDa), 1% (w/v) trehalose and 42.2 mM calcium chloride were freeze-dried. Seven different PRP preparations were used to solubilize the formulations. Controls were recalcified PRP. RESULTS: CS solubilization was achieved with all PRP preparations. CS-PRP formulations were less runny than their corresponding PRP controls. All CS-PRP formulations had a clotting time below 9 minutes, assessed by thromboelastography, while the leukocyte-rich PRP controls took longer to coagulate (>32 min), and the leukocyte-reduced PRP controls did not coagulate in this dynamic assay. In glass culture tubes, all PRP controls clotted, expressed serum and retracted (43-82% clot mass lost) significantly more than CS-PRP clots (no mass lost). CS dispersion was homogenous within CS-PRP clots. CONCLUSIONS: In vitro performance of the CS-PRP formulations was comparable for all types of PRPs assessed.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Plasma Rico em Plaquetas/química , Materiais Biocompatíveis/administração & dosagem , Coagulação Sanguínea , Quitosana/administração & dosagem , Liofilização , Humanos , Injeções , Masculino , Próteses e Implantes , Solubilidade , Cicatrização
9.
J Tissue Eng Regen Med ; 13(4): 599-611, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30706995

RESUMO

Bone-marrow stimulation (BMS) improves knee-joint function but elicits incomplete repair. Liquid chitosan (CS)-glycerol phosphate/blood clots have been shown to improve BMS-based cartilage repair. Platelet-rich-plasma (PRP)-a rich source of growth factors and cytokines-improves recruitment and chondrogenic potential of subchondral mesenchymal stem cells. We hypothesised that repair response in a rabbit chronic-defect model will improve when freeze-dried CS/PRP is used to augment BMS. Bilateral trochlear defects created in New Zealand white rabbits were allowed to progress to a chronic stage over 4 weeks. Chronic defects were debrided and treated by BMS in second surgery, then augmented with PRP (BMS + PRP) or freeze-dried CS/PRP implants (BMS + CS/PRP). The quality of 8-week repair tissue was assessed by macroscopic, histological, and micro computed tomography (Micro-CT) analysis. ICRS macroscopic scores indicated fibrocartilaginous or fibrous repair in control defects that were improved in the BMS + CS/PRP group. An overall improvement in repair in BMS + CS/PRP group was further confirmed by higher O'Driscoll scores, %Saf-O and %Coll-II values. Micro-CT analysis of subchondral bone indicated ongoing remodelling with repair still underway. Quality and quantity of cartilage repair was improved when freeze-dried CS/PRP implants were used to augment BMS in a chronic defect model.


Assuntos
Medula Óssea/patologia , Cartilagem Articular/patologia , Quitosana/farmacologia , Liofilização , Injeções , Plasma Rico em Plaquetas/química , Próteses e Implantes , Cicatrização , Animais , Medula Óssea/efeitos dos fármacos , Remodelação Óssea , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/cirurgia , Modelos Animais de Doenças , Feminino , Inflamação/patologia , Projetos Piloto , Implantação de Prótese , Coelhos , Cicatrização/efeitos dos fármacos
10.
J Biomater Appl ; 33(6): 792-807, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30426861

RESUMO

Rotator cuff tears result in shoulder pain, stiffness, weakness and loss of motion. After surgical repair, high failure rates have been reported based on objective imaging and it is recognized that current surgical treatments need improvement. The aim of the study was to assess whether implants composed of freeze-dried chitosan (CS) solubilized in autologous platelet-rich plasma (PRP) can improve rotator cuff repair in a rabbit model. Complete tears were created bilaterally in the supraspinatus tendon of New Zealand White rabbits ( n = 4 in a pilot feasibility study followed by n = 13 in a larger efficacy study), which were repaired using transosseous suturing. On the treated side, CS-PRP implants were injected into the transosseous tunnels and the tendon itself, and healing was assessed histologically at time points ranging from one day to two months post-surgery. CS-PRP implants were resident within transosseous tunnels and adhered to tendon surfaces at one day post-surgery and induced recruitment of polymorphonuclear cells from 1 to 14 days. CS-PRP implants improved attachment of the supraspinatus tendon to the humeral head through increased bone remodelling at the greater tuberosity and also inhibited heterotopic ossification of the supraspinatus tendon at two months. In addition, the implants did not induce any detectable deleterious effects. This preliminary study provides the first evidence that CS-PRP implants could be effective in improving rotator cuff tendon attachment in a small animal model.


Assuntos
Materiais Biocompatíveis/química , Quitosana/química , Plasma Rico em Plaquetas/química , Lesões do Manguito Rotador/terapia , Animais , Materiais Biocompatíveis/administração & dosagem , Materiais Biocompatíveis/uso terapêutico , Bioprótese , Quitosana/administração & dosagem , Quitosana/uso terapêutico , Feminino , Liofilização , Injeções , Coelhos , Manguito Rotador/cirurgia , Lesões do Manguito Rotador/cirurgia , Tendões/cirurgia , Cicatrização
11.
ACS Biomater Sci Eng ; 4(11): 3737-3746, 2018 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33429611

RESUMO

Rotator cuff tears are a very common shoulder pathology. Different suturing techniques have been used for surgical cuff repair, but failure of healing remains a significant clinical challenge. The objective of this study was to establish and compare chronic and acute ovine rotator cuff tear models in our laboratory and investigate the feasibility of using chitosan (CS)-platelet-rich plasma (PRP) implants in conjunction with suture anchors to treat rotator cuff tears in large animal models. Repair with suture anchors only was used as control. In two preliminary pilot studies, unilateral full-thickness tears were created in the infraspinatus (ISP) tendon of mature female Texel-cross sheep. In the chronic model (n = 4 sheep), the tendons were capped with silicon and allowed to retract for 6 weeks, leading to degenerative changes, whereas the tendons were immediately repaired in the acute model (n = 4 sheep). Transected ISP tendons were reattached with suture anchors and, in the case of treated shoulders, implants composed of freeze-dried CS solubilized in autologous PRP were additionally applied to the tendon-bone interface and on top of the repaired site. The chronic defect model induced significant tendon degeneration and retraction, which made repair more challenging than in the acute defect model. Half the tendons in the chronic repair model were found to be irrepairable at 6 weeks. In the other half, the tendons could not be reattached to the footprint due to significant retraction, which made this a model of tissue formation in a gap. In contrast, the acute tendon repair model was executed easily. Extensive bone remodeling and tissue ingrowth at the tendon-bone interface were observed in the case of treatment with anchors + CS-PRP in both models, suggesting that CS-PRP implants could potentially modulate rotator cuff healing processes in large animal models.

12.
J Knee Surg ; 31(1): 99-116, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28464195

RESUMO

Menisci display exquisitely complex structure and play an essential weight-bearing role in the knee joint. A torn meniscus is one of the most common knee injuries which can result in pain and mechanical abnormalities. Tear location is one aspect which determines the endogenous healing response; tears that occur in the peripheral densely vascularized zone of the meniscus have the potential to heal while the healing capacity is more limited in the less vascularized inner zones. Meniscectomy was once widely performed, but led to poor radiographic and patient-reported mid- and long-term outcomes. After the advent of arthroscopy, orthopaedic opinion in the 1980s has been swaying toward salvaging or repairing the torn meniscus tissue to prevent osteoarthritis rather than performing meniscectomy. Meniscus repair in young active individuals has been shown to be effective, reproducible, and reliable if indications are met; however, only a small proportion of all tears are considered repairable with available technologies. Biological augmentation techniques and meniscus tissue engineering strategies are being devised to enhance the likelihood and rate of healing in meniscus repair. Preclinical and clinical studies have shown that introduction of cellular elements of the blood, bone marrow, and related growth factors have the potential to enhance meniscus repair. This article reviews the current state of clinical management of meniscus tears (primary repair) as well as augmentation techniques to improve healing by meniscus wrapping with extracellular matrix materials, trephination, synovial rasping and abrasion, fibrin/blood clot placement, and platelet-rich plasma injections. In addition, the rationale for using polymer/autologous blood component implants to improve meniscus repair will be discussed.


Assuntos
Lesões do Menisco Tibial/terapia , Algoritmos , Artroscopia , Adesivo Tecidual de Fibrina/uso terapêutico , Hemostáticos/uso terapêutico , Humanos , Meniscos Tibiais/cirurgia , Plasma Rico em Plaquetas , Técnicas de Sutura , Engenharia Tecidual , Cicatrização
13.
Cartilage ; 9(4): 378-390, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29156978

RESUMO

OBJECTIVE: Bone marrow stimulation procedures initiate repair by fracturing or drilling subchondral bone at base of cartilaginous defect. Earlier studies have shown that defect location and animal age affect cartilage repair outcome, suggesting a strong influence of structural and biological characteristics of subchondral bone. Here, we analyzed comprehensive biological characteristics of bone marrow progenitor cells (BMPCs) in subchondral bone of young and old rabbit condyle and trochlea. We tested the hypothesis that in vitro biological properties of BMPCs are influenced by location, age of donor and method of their isolation. DESIGN: In vitro biological properties, including cell yield, colony-forming unit fibroblasts (CFU-f), surface marker expression, and differentiation potential were determined. Comparisons were carried out between trochlea versus condyle and epiphyseal versus metaphyseal bone using old ( N = 5) and young animal knees ( N = 8) to generate collagenase and explant-derived BMPC cultures. RESULTS: CFU-f, cell yield, expression of stem cell markers, and osteogenic differentiation were significantly superior for younger animals. Trochlear subchondral bone yielded the most progenitors with the highest clonogenic potential and cartilaginous matrix expression. Trochlear collagenase-derived BMPCs had higher clonogenic capacity than explant-derived ones. Epiphyseal cells generated a larger chondrogenic pellet mass than metaphyseal-derived BMPCs. All older pellet cultures and one non-responder young rabbit failed to accumulate glycosaminoglycans (GAGs). CONCLUSION: Taken together, these results suggest that properties intrinsic to subchondral progenitors could significantly influence cartilage repair potential, and could partly explain variability in cartilage repair outcomes using same cartilage repair approach.


Assuntos
Células da Medula Óssea/fisiologia , Osso e Ossos/citologia , Células-Tronco/fisiologia , Ulna/citologia , Animais , Condrogênese , Ensaio de Unidades Formadoras de Colônias , Osteogênese , Coelhos
14.
Biomacromolecules ; 19(1): 112-131, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29211954

RESUMO

Chitosan (CS) shows in vitro and in vivo efficacy for siRNA delivery but with contradictory findings for incompletely characterized systems. For understanding which parameters produce effective delivery, a library of precisely characterized chitosans was produced at different degrees of deacetylation (DDAs) and average molecular weights (Mn). Encapsulation and transfection efficiencies were characterized in vitro. Formulations were selected to examine the influence of Mn and N:P ratio on nanoparticle uptake, metabolic activity, genotoxicity, and in vitro transfection. Hemocompatibility and in vivo biodistribution were then investigated for different Mn, N:P ratios, and doses. Nanoparticle uptake and gene silencing correlated with increased surface charge, which was obtained at high DDA and high Mn. A minimum polymer length of ∼60-70 monomers (∼10 kDa) was required for stability and knockdown. In vitro knockdown was equivalent to lipid control with no metabolic or genotoxicity. An inhibitory effect of serum on biological performance was dependent on DDA, Mn, and N:P. In vivo biodistribution in mice show accumulation of nanoparticles in kidney with 40-50% functional knockdown.


Assuntos
Aminas/metabolismo , Materiais Biocompatíveis/química , Quitosana/administração & dosagem , Inativação Gênica , Nanopartículas/química , Fosfatos/metabolismo , RNA Interferente Pequeno/administração & dosagem , Acetilação , Sangue , Linhagem Celular Tumoral , Quitosana/química , Quitosana/farmacocinética , Ensaio Cometa , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Túbulos Renais Proximais/citologia , Túbulos Renais Proximais/metabolismo , Peso Molecular , Nanopartículas/toxicidade , Reação em Cadeia da Polimerase em Tempo Real , Distribuição Tecidual
15.
J Colloid Interface Sci ; 512: 335-345, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29080529

RESUMO

Chitosan (CS)/siRNA polyplexes have great therapeutic potential for treating multiple diseases by gene silencing. However, clinical application of this technology requires the development of concentrated, hemocompatible, pH neutral formulations for safe and efficient administration. In this study we evaluate physicochemical properties of chitosan polyplexes in various buffers at increasing ionic strengths, to identify conditions for freeze-drying and rehydration at higher doses of uncoated or hyaluronic acid (HA)-coated polyplexes while maintaining physiological compatibility. Optimized formulations are used to evaluate the impact of the siRNA/oligonucleotide sequence on polyplex physicochemical properties, and to measure their in vitro silencing efficiency, cytotoxicity, and hemocompatibility. Specific oligonucleotide sequences influence polyplex physical properties at low N:P ratios, as well as their stability during freeze-drying. Nanoparticles display greater stability for oligodeoxynucleotides ODN vs siRNA; AT-rich vs GC-rich; and overhangs vs blunt ends. Using this knowledge, various CS/siRNA polyplexes are prepared with and without HA coating, freeze-dried and rehydrated at increased concentrations using reduced rehydration volumes. These polyplexes are non-cytotoxic and preserve silencing activity even after rehydration to 20-fold their initial concentration, while HA-coated polyplexes at pH∼7 also displayed increased hemocompatibility. These concentrated formulations represent a critical step towards clinical development of chitosan-based oligonucleotide intravenous delivery systems.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Quitosana/química , Proteínas de Fluorescência Verde/antagonistas & inibidores , Ácido Hialurônico/química , Oligonucleotídeos/química , RNA Interferente Pequeno/administração & dosagem , Soluções Tampão , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Liofilização , Hemaglutinação/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Nanopartículas/administração & dosagem , Nanopartículas/química , RNA Interferente Pequeno/química , RNA Interferente Pequeno/genética , Células Tumorais Cultivadas
16.
Biomed Mater ; 13(1): 015005, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29125132

RESUMO

Platelet-rich plasma (PRP) has been used to treat different orthopedic conditions, however, the clinical benefits of using PRP remain uncertain. Chitosan (CS)-PRP implants have been shown to improve meniscus, rotator cuff and cartilage repair in pre-clinical models. The purpose of this current study was to investigate in vitro and in vivo mechanisms of action of CS-PRP implants. Freeze-dried formulations containing 1% (w/v) CS (80% degree of deacetylation and number average molar mass 38 kDa), 1% (w/v) trehalose as a lyoprotectant and 42.2 mM calcium chloride as a clot activator were solubilized in PRP. Gravimetric measurements and molecular/cellular imaging studies revealed that clot retraction is inhibited in CS-PRP hybrid clots through physical coating of platelets, blood cells and fibrin strands by chitosan, which interferes with platelet aggregation and platelet-mediated clot retraction. Flow cytometry and ELISA assays revealed that platelets are activated and granules secreted in CS-PRP hybrid clots and that cumulative release of platelet-derived growth factor (PDGF-AB) and epidermal growth factor is higher from CS-PRP hybrid clots compared to PRP clots in vitro. Finally, CS-PRP implants resided for up to 6 weeks in a subcutaneous implantation model and induced cell recruitment and granulation tissue synthesis, confirming greater residency and bioactivity compared to PRP in vivo.


Assuntos
Plaquetas/citologia , Quitosana/química , Retração do Coágulo , Fator de Crescimento Derivado de Plaquetas/metabolismo , Plasma Rico em Plaquetas/metabolismo , Animais , Cloreto de Cálcio/química , Fator de Crescimento Epidérmico/metabolismo , Fibrina/química , Citometria de Fluxo , Liofilização , Masculino , Microscopia Confocal , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Ativação Plaquetária , Agregação Plaquetária , Coelhos , Eletricidade Estática , Temperatura , Fator de Crescimento Transformador beta1/metabolismo
17.
Carbohydr Polym ; 176: 167-176, 2017 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-28927595

RESUMO

The stability of DNA/chitosan complexes upon exposure to hyaluronic acid, chondroitin sulfate, and heparin, was assessed by fluorescence spectroscopy to quantify DNA release. Only the highly charged heparin was found to release DNA from the complexes. Complex stability upon exposure to heparin increased with the degree of deacetylation and molecular weight of chitosan and with the ratio of chitosan amino groups to DNA phosphate groups (N/P ratio) in the complexes. Isothermal titration microcalorimetry revealed that among polyanions tested, only heparin has a binding affinity to chitosan approaching that of DNA and can therefore release DNA from the complexes. These results also indicate that anionic components with sufficiently high charge density can induce extracellular or intracellular release of DNA, the former negatively affecting delivery efficiency while the latter is required for gene transfer to occur. Our findings also suggest that increased N/P ratio of the complexes can play an important role in preventing premature dissociation of DNA/polycation complexes upon interaction with anionic components in extracellular milieu.


Assuntos
Quitosana/química , DNA/química , Vetores Genéticos/química , Polímeros/química , Calorimetria , Sulfatos de Condroitina/química , Heparina/química , Ácido Hialurônico/química , Polieletrólitos
19.
Ann Biomed Eng ; 45(10): 2410-2421, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28653292

RESUMO

Quantitative assessments of articular cartilage function are needed to aid clinical decision making. Our objectives were to develop a new electromechanical grade to assess quantitatively cartilage quality and test its reliability. Electromechanical properties were measured using a hand-held electromechanical probe on 200 human articular surfaces from cadaveric donors and osteoarthritic patients. These data were used to create a reference electromechanical property database and to compare with visual arthroscopic International Cartilage Repair Society (ICRS) grading of cartilage degradation. The effect of patient-specific and location-specific characteristics on electromechanical properties was investigated to construct a continuous and quantitative electromechanical grade analogous to ICRS grade. The reliability of this novel grade was assessed by comparing it with ICRS grades on 37 human articular surfaces. Electromechanical properties were not affected by patient-specific characteristics for each ICRS grade, but were significantly different across the articular surface. Electromechanical properties varied linearly with ICRS grade, leading to a simple linear transformation from one scale to the other. The electromechanical grade correlated strongly with ICRS grade (r = 0.92, p < 0.0001). Additionally, the electromechanical grade detected lesions that were not found visually. This novel grade can assist the surgeon in assessing human knee cartilage by providing a quantitative and reliable grading system.


Assuntos
Cartilagem Articular/patologia , Cartilagem Articular/fisiopatologia , Bases de Dados Factuais , Eletrodiagnóstico , Articulação do Joelho/patologia , Articulação do Joelho/fisiopatologia , Adolescente , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
20.
J Colloid Interface Sci ; 500: 253-263, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28411432

RESUMO

Chitosan (CS)-based polyplexes are efficient non-viral gene delivery systems that are most commonly prepared by manual mixing. However, manual mixing is not only poorly controlled but also restricted to relatively small preparation volumes, limiting clinical applications. In order to overcome these drawbacks and to produce clinical quantities of CS-based polyplexes, a fully automated in-line mixing platform was developed for production of large batches of small-size and homogeneous CS-based polyplexes. Operational conditions to produce small-sized homogeneous polyplexes were identified. Increasing mixing concentrations of CS and nucleic acid was directly associated with an increase in size and polydispersity of both CS/pDNA and CS/siRNA polyplexes. We also found that although the speed of mixing has a negligible impact on the properties of CS/pDNA polyplexes, the size and polydispersity of CS/siRNA polyplexes are strongly influenced by the mixing speed: the higher the speed, the smaller the size and polydispersity. While in-line and manual CS/pDNA polyplexes had similar size and PDI, CS/siRNA polyplexes were smaller and more homogenous when prepared in-line in the non-laminar flow regime compared to manual method. Finally, we found that in-line mixed CS/siRNA polyplexes have equivalent or higher silencing efficiency of ApoB in HepG2 cells, compared to manually prepared polyplexes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...